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Abstract.

Past evolution of terrestrial planets is difficult to study due to the lack of data and in situ measurements. However, it is necessary in order to

explain some of the fealures that are observed by recent missions.

This work is meant to show that even with the few data we have and by using simple straightforward models, it is possible to have some

answers about the evolution of Mars during the last 3 Gy. We study possible stales of the past Martian atmosphere consistent with present

observation through a simple evalution model based on realistic oulg: and pheric loss. We focus on CO, as the most

likety main gas present in the atmosphere at that time and involved in Ialga acale and long term processes,

Velcanic degassing is oblained through the use of results from numerical model analysis that yielded the evolutions of crust preduction rates

{Breuer et al., 2003 and 2006, Manga et al., 2006). By evaluating the contents of the lavas, the amount of volatiles that are released can be

estimated through different scenarios.

The mechanisms leading to the loss of the Martian atmosphere are all thought to be part of the atmespheric escape rather than some surface
irs such as f ion as no has been found on Mars to this day. Atmospheric escape is due to non thermal peo-

cesses (| g solar emissi as opposed to thermal (such as pe). We used from ASPERA

and Mars E:rprass and models from Chassefiére et al. (2008) 1o estimate the amuuntol lost atmosphere

Thus we obtain evolutions of the CO, pressure that are consistent with the present state of the atmosphere. It first appears that a present-day

crustal production of at least 0.01 fo 0.1 km'lyear is needed for the atmosphere to be at steady state.

Moreover our models provide us with a rough constraint en the CO, contents of the Martian mantle. It seems it should be lower than 200ppm

in erder o fit with present-day conditions. Higher concentrations would lead 1o thicker almospheres due io intense release of gases by late

wvolcanism.

We also witness around 3 Gy ago a rapid loss of the primary (and 1 due to ic escape. It is finally found that

for most of the scenarios (we investigate a wide range of manile compositions and atmospheric escape models) the present almosphere is

of velcanic origin and has been created between 1 Gy and 1.5 Gy ago. If the volcanic activity and the degassing are intense encugh then the

atmosphere can even be entirely secondary and as young as 500 My, meaning that the present Martian atmosphere can be very young,
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Spultanng ions. pwduosd in the corona or in the ionosphana lumpaﬁ Iho neutral atmosphere and lead to the ejection of neutral particles.

ion: lons from the & and form ic neutrals with enough energy to escape.

Ion pick-up: lons produced in the exosphere are dragged along by the solar magnetic field lines wrapping the planet.
-lonospheric outflow: kons are produced within the ionosphere and can flow up to the ionopause where they are dragged by the solar wind.

The change of slope in the same figure is attributed fo the non-finearity of the processes. We suppose that one oxygen atom escapes with
two hydrogen atoms and that one carbon atom is associated with two oxygen atoms. This enables us to have an estimate of the amount of
CO, and H,0 lost to space. The H,0 loss rate is at least ane order of magnitude higher than CO, loss rate. So here, we use CO, loss rate as
the limiting parameter.As new dala becomes available thanks to missions, we adapt our models. Latest ASPERA measurements for the pre-
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mosphere. s — - v On the middle right hand panel we compare two different possibili-
ties for atmospheric escape modeis: one adapted from Chassefiére

Before the significant drop in pressure occurring 2.5 Gyr ago, i et al (2008), the other from ASPERA present-day data (Carssona et
the CO, pressure was at its highest for the pnrhd of time we ooafl al 2006). The one whers new ASPERA measurements are used
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cide with the of fluvial as by g I sent-day escape imples that the planet could have lost less CO, 1o
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higher than the one we observe during the late period of acti- s ) than in the other {with higher escape). It thus means that past atmos-
vity (around 1.5 Gy ago), it might be possible that Bquid water = \ phere was even less dense with this low escape model. Indeed, in
existed at this time on the surface. < oo this case, the Martian atmosphere seems to be quite stable for the
Assuming the proportions between CO, and H.O are roughly g8 past two billion years with a pressure staying around present-day
the same in Martian lavas as in those from Earth (Philips et al., values (never exceeding 0,02 bars). Again this atmosphere s a se-
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CO, is volcanism, we can calculate an approximate H.O partial Prevard CO, Prestors phere existed for a while and it can be said that the primary atmos- o
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Our results suggest that the presant-day seems to be a almost entirely or entirely created by volcanic de-
’ N [gassing, with low CO, contents in the lavas.

We considered several models to test the influence of CO, - Since we can observe its present state, we obtain a rough upper boundary on the thick of the past of Mars for the past 3Gy,

content in the melted material used for the degassing. We ob-
serve that for very low CO, degassing, a part of the primordial
atmosphere remains. However, as soon as the amount of CO,
available gets higher, the maximum CO, pressure drops. This
means that with these models, the whole present atmosphere
is secondary and originates only from recent volcanism. We
can estimate an age for these atmospheres and it can be as
young as 1.5 Gy. Other models where used to study the in-
fluence of global activity on the evolution of maximal CO, pres-
sure. Brauer et al (2008) give several curves for crust produc-

tion rates depending on the initial temperature of the mantle. Above: Evalution of
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This also requires a very small CO, concentration in the mantle as higher CO, concentrations lead to cases that have no physical explanation,
These cases can however be thought of as consiraints on the CO, contents of the lavas. Thus it seems that CO, content can only be less than
200ppm else we still would observe an atmosphere thicker than what is seen at presant time. If, on the contrary, there was less CO, left three
billion years ago (around 30mb typically), our maodels kead to the conclusion lhatmo present-day atmosphere is much younger (mnybo as
‘young as 1 Gy) and has been created by the volcanic in the late period of the planet activity.

It must be noled that when a model with lower volcanic rates is used. such as the one from O'Neill et al, (2007), Earth-like CO, concentrations
(~500ppm) are viable and yield essentially similar results than what is obtained with low crust production rates. However, in “this case, ¥ low
CO, concentrations are used (typically 100-200ppm). the ic escape b th |Process.

Onemmns fo obtain these constraints woulkd be to study the fractionation of isotopes such as “N/"™N and “C/™C. It would be possible to esti-
mate, independently from the model used here, a rough value for the age of the Martian atmosphere,
nmuldﬁnauybewmamgmmodullMmlumnnﬂl\sMmmnmuwmyo{munmammmmmbﬂynm
in terms of species formation (the need to have a neutral pH
The main obstacle we encounter for now is our need for a climate model Io compute the surface hmpcralurl that is required to estimate the
state and amount of water on the surface.




